MCMC sampling을 위한 라이브러리
marathon : c++ 라이브러리
c++ 라이브러리는 고려하지 않았으므로 패스
Pyro : Pyro is a universal probabilistic programming language (PPL) written in Python and supported by PyTorch on the backend. Pyro enables flexible and expressive deep probabilistic modeling, unifying the best of modern deep learning and Bayesian modeling. It was designed with these key principles
Universal: Pyro can represent any computable probability distribution.
Scalable: Pyro scales to large data sets with little overhead.
Minimal: Pyro is implemented with a small core of powerful, composable abstractions.
Flexible: Pyro aims for automation when you want it, control when you need it.
- 살펴보면 Variational inference 기반임
PyMC : PyMC (formerly PyMC3) is a Python package for Bayesian statistical modeling focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.
https://github.com/pymc-devs/pymc
Sampyl : Sampyl is a Python library implementing Markov Chain Monte Carlo (MCMC) samplers in Python. It’s designed for use in Bayesian parameter estimation and provides a collection of distribution log-likelihoods for use in constructing models.
코드 자체가 이해하기 쉬운 편
https://github.com/mcleonard/sampyl
'프로그래밍 Programming > 파이썬 Python' 카테고리의 다른 글
[matplotlib] matplotlib에서 latex 사용 오류 (0) | 2024.01.26 |
---|---|
[matplotlib] 그래프 색상/마커 다르게 그리기 (0) | 2023.09.18 |
[Jupyter notebook] 내가 설정한 주피터 노트북 테마 (0) | 2023.02.23 |
[JAX] JAX 설치 및 GPU 사용하기 (2) | 2023.02.09 |
[Matplotlib] legend 그림 바깥에 배치/원하는 위치에 배치 (0) | 2023.01.14 |