[Python] 내가 헷갈려서 기록하는 matplotlib의 subplot 그리기
·
프로그래밍 Programming/파이썬 Python
matplotlib을 깊이 다뤄본 분들은 알겠지만 matplotlib은 사용법이 2가지가 있다. 1. 간단하게 사용하는 방법(pyplot interface를 이용하는 방법) 2. 객체를 이용하는 방법(Object-oriented interface를 이용하는 방법) 차라리 한 가지 방법만 일관되게 사용하면 좋을텐데, 예제코드마다 방식이 달라서 혼동이 많다. 보통 구글링을 통해 코드를 구하다보면 많이 공감하실 거라 생각한다. 제일 확실한 방법은 라이브러리에 들어가서 찾아보는 방법이다. (나 역시 답답해서 찾아본 케이스..) 1. 1번 방법과 2번 방법 비교 어떤 코드를 보면 import matplotlib.pyplot as plt x = np.linspace(0, 2, 100) plt.plot(x, x, l..
[LaTeX] 알아두면 유용한 문법
·
기타
1. Condition에 따라 결과값 다른 것을 표현하기 { example) A={0if t01if t>0 A={0if t01if t>0 2. 등호 정렬하기 example) f(x)=ax2+bx+c=a(x2+bax)+c $\begin{align*} f(x) & =ax^{2}+bx+c \\ & =a(x^{2}+..
[수치해석] Numerical solution of ODE (1) introduction
·
수치해석 Numerical Analysis
이번에는 ODE를 수치해석적인 방법으로 푸는 것에 대해 다루겠습니다. 1. Introduction 예를 들어 y+wy=f(x) d2ydx2+wy=f(x) 적분 상수가 2개 나오므로 조건이 2개가 필요합니다. initial value problem(IVP)이면 초기조건이 주어지고 y(0)=y0 dydx|x=0=v0 boundary value problem(BVP)이면 y(0)=y0 y(L)=yL 일단 처음에는 IVP를 먼저 풀고, 그 다음에 BVP로 확장하겠습니다. 모든 방법은 0ttn에서의 solution을 알고 있다고 가정하고 그 solution을 ..
[고체역학] Statics Ch2 : Statics of Particles
·
기계공학 Mechanical engineering/고체역학 Statics & Solid mechanics
(이 글의 자료들은 모두 교재에서 나온 것이므로, 다른 곳으로 가져가지 말아주세요) 우리가 고체역학에서 다루는 문제, 그리고 시스템은 비록 부피와 질량이 있지만, 부피와 질량을 고려할 필요가 없는 상황에서는 물체를 particle로 생각하고 그 particle에 대한 force와 moment를 구해서 계산하는 것이 더 편리합니다. a particle 하나에 여러 힘이 작용할 때 그 힘과 동일하게 작용하는 힘을 resultant force라고 합니다. resultant force를 구하는 것은 물체의 평형(equilibrium)을 따질 때 도움이 됩니다. 1. Force force는 point of application, magnitude, line of action, 그리고 sense로 특정할 수 있습니..
[수치해석] Numerical integration (3) - Gauss quadrature
·
수치해석 Numerical Analysis
이번에는 numerical integration의 마지막, Gauss quadrature에 대해서 알아보겠습니다. 1. Definition of Gauss quadrature Gauss quadrature는 특정 weight(wi)와 함수값 (f(xi))의 곱을 discrete하게 더했을 때 그 구간의 definite integral과 거의 approximate하게 만드는 방법입니다. 식으로 표현하면 다음과 같습니다. abf(x)dxi=0nf(xi)wi() 이 때, h (interval between the points),{wi},{xi}는 균일..
[수치해석] Numerical integration (2) - Simpson's rule, Romberg integration, Adaptive quadrature
·
수치해석 Numerical Analysis
이번에는 수치해석 적분 중 하나인 Simpson's rule에 대해서 공부하겠습니다. (mid point rule과 trapezoidal rule에 대해서는 이전 글을 참고해주세요.) 1. Simpson's rule Rectangular (mid point) rule error : R(f)=124hi3f(yi)+θ(hi5) Trapezoidal rule error : T(f)=112hi3f(yi)+θ(hi5) yi=xi+xi+12 : mid point hi=xi+1xi 위의 두 ..
[수치해석/MATLAB] Lagrangian polynomial 구현하는 코드
·
수치해석 Numerical Analysis
수치해석 수업을 들으면서 수치해석으로 문제를 푸는 과정을 거치고 있습니다. (수치해석 정리글은 나중에 한꺼번에 올라갈 예정) 수치적으로 interpolation을 하는 것 중에 사용되지는 않지만 구현하기는 쉬운 Lagrangian polynomial에 대해 구현한 것을 공유하고자 합니다. Lagranian polynomial을 만드는 방법에 대한 설명은 normal-engineer.tistory.com/95 [수치해석] Interpolation (1) - Polynomial interpolation 이번에는 수치해석에서 사용하는 interpolation 방법에 대해서 알아봅니다. 우리의 목적은 주어진 discrete data (xi,yi) for i=1,2,3,,n..
[SQL] Database
·
프로그래밍 Programming
데이터 단위 bit - byte - field - record - file - database Problems with the Tradition 각 부서마다 다른 application program을 가지고 그 프로그램 안에서 데이터를 다루고 있다. 그러나 각 부서마다 겹치는 데이터가 있음에도 각자 가지고 있어 data redundancy가 발생한다. 또한 데이터가 변경되었는데 다른 곳에서는 업데이트 되지 않아 일관되지 않은 데이터가 존재할 수 있다. 또한 데이터에 접근하는 프로그램이 각자 다르기 때문에 프로그램을 바꾸고 싶을 때 프로그램에 저장된 파일을 모두 변환해줘야 다른 프로그램에서 쓸 수 있다. 그 외에도 lack of flexbility, poor security, lack of data sha..
[고체역학] Introduction
·
기계공학 Mechanical engineering/고체역학 Statics & Solid mechanics
고체역학을 배운 지 오래되었지만 오랜만에 복습을 하려고 합니다. (꾸준히 할 수 있을지ㅠ) 세부적인 내용을 다루기 보다는 전체적인 그림을 그리는 데에 목적이 있어서 이 카테고리의 포스팅은 고체역학 요약본이라고 생각하시면 됩니다. 자세한 내용은 교재를 보면서 공부하는 것을 권장합니다. 참고 교재 : Statics Vector Mechanics for Engineers : Statics (Ferdinand P. Beer, McGraw-Hill Education, 11th edition) Mechanics of materials (Ferdinand P. Beer, David F. Mazurek, John T. Dewolf, E. Russell Johnston Jr., McGraw-Hill Education, ..
[수치해석] Numerical integration (1) - Mid point rule, Trapezoidal rule
·
수치해석 Numerical Analysis
interpolation, differentiation에 이어서 integration을 수치해석적으로 수행해보겠습니다. 1. Introduction x0(=a)부터 xn(=b)까지 적분을 하려고 합니다. 우리는 discrete하게밖에 계산할 수 없으므로, I=abf(x)dx=j=0nfjωj 적분을 오른쪽 식처럼 계산해야합니다. 이 때 ωj는 weighting factor라고 부릅니다. 이 전에 Lagrange polynomial을 배웠고, 그 polynomial 식은 p(x)=j=0nfjLj(x)입니다. 이 방법을 통해 내가 알고 있는 데이터 점들을 충족하는 함수 식을..